Artikel

Profit uplift modeling for direct marketing campaigns: approaches and applications for online shops

In order to select "best" customers for a direct marketing campaign, response models are widespread: a sample of customers receives an ad, a catalog, a sample pack, or a discount offer on a test basis. Then, their responses (e.g., website visits, conversions, or revenues) are used to build a predictive model. Finally, this model is applied to all customers in order to select "best" ones for the campaign. However, up to now, only models that reflect website visits, conversions, or revenues have been proposed. In this paper, we discuss the shortcomings of these traditional approaches and propose profit uplift modeling appoaches based on one-stage ordinary regression and random forests as well as two-stage Heckman sample selection and zero-inflated negative binomial regression for parameter estimation. The new approaches demonstrate superiority to the traditional ones when applied to real-world datasets. One dataset reflects recent discount offers of a large online fashion retailer. The other is the well-known Hillstrom dataset that describes two Email campaigns.

Sprache
Englisch

Erschienen in
Journal: Journal of Business Economics ; ISSN: 1861-8928 ; Volume: 92 ; Year: 2021 ; Issue: 4 ; Pages: 645-673 ; Berlin, Heidelberg: Springer

Klassifikation
Management
Econometrics
Forecasting Models; Simulation Methods
Marketing
Advertising
Thema
Uplift modeling
Heckman sample selection model
Zero-inflated negative binomial regression
Random forests
Online shops

Ereignis
Geistige Schöpfung
(wer)
Baier, Daniel
Stöcker, Björn
Ereignis
Veröffentlichung
(wer)
Springer
(wo)
Berlin, Heidelberg
(wann)
2021

DOI
doi:10.1007/s11573-021-01068-3
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Baier, Daniel
  • Stöcker, Björn
  • Springer

Entstanden

  • 2021

Ähnliche Objekte (12)