Artikel

Artificial intelligence and big data can help contain resistance to antibiotics

Improving physicians' prescription practices is a primary strategy for countering the rise in resistance to antibiotics. This would prevent physicians from incorrectly prescribing antibiotics, one of the main causes of antibiotic resistance. The increasing availability of medical data and methods of machine learning provide an opportunity to generate instant diagnoses. In the present study, the example of urinary tract infections in Denmark is used to demonstrate how data-based predictions can improve clinical practice in the face of increasing antibiotic resistance. For this purpose, comprehensive administrative and medical data, in combination with machine learning methods and economic modeling, were used to develop rules for prescribing antibiotics. The total number of prescriptions could be reduced by 7.42 percent by applying the recommended policy measures without reducing the number of treated bacterial infections. This demonstrates the great potential of this method. However, in Germany this potential cannot be tapped until more information is digitized. The information that must be supplied to the IT systems in physicians' practices and hospitals is often collected and saved by decentralized institutions; linking it is key.

Sprache
Englisch

Erschienen in
Journal: DIW Weekly Report ; ISSN: 2568-7697 ; Volume: 9 ; Year: 2019 ; Issue: 19 ; Pages: 169-175 ; Berlin: Deutsches Institut für Wirtschaftsforschung (DIW)

Klassifikation
Wirtschaft
Econometric and Statistical Methods and Methodology: General
Large Data Sets: Modeling and Analysis
Analysis of Health Care Markets
Health: Government Policy; Regulation; Public Health
Public Policy
Technological Change: Government Policy
Renewable Resources and Conservation: Government Policy
Thema
antibiotic prescribing
prediction policy
machine learning
expert decision-making

Ereignis
Geistige Schöpfung
(wer)
Ribers, Michael
Ullrich, Hannes
Ereignis
Veröffentlichung
(wer)
Deutsches Institut für Wirtschaftsforschung (DIW)
(wo)
Berlin
(wann)
2019

DOI
doi:10.18723/diw_dwr:2019-19-1
Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Ribers, Michael
  • Ullrich, Hannes
  • Deutsches Institut für Wirtschaftsforschung (DIW)

Entstanden

  • 2019

Ähnliche Objekte (12)