Artikel
A note on completely positive relaxations of quadratic problems in a multiobjective framework
In a single-objective setting, nonconvex quadratic problems can equivalently be reformulated as convex problems over the cone of completely positive matrices. In small dimensions this cone equals the cone of matrices which are entrywise nonnegative and positive semidefinite, so the convex reformulation can be solved via SDP solvers. Considering multiobjective nonconvex quadratic problems, naturally the question arises, whether the advantage of convex reformulations extends to the multicriteria framework. In this note, we show that this approach only finds the supported nondominated points, which can already be found by using the weighted sum scalarization of the multiobjective quadratic problem, i.e. it is not suitable for multiobjective nonconvex problems.
- Sprache
-
Englisch
- Erschienen in
-
Journal: Journal of Global Optimization ; ISSN: 1573-2916 ; Volume: 82 ; Year: 2021 ; Issue: 3 ; Pages: 615-626 ; New York, NY: Springer US
- Klassifikation
-
Mathematik
Single Equation Models; Single Variables: Other
Single Equation Models; Single Variables: General
- Thema
-
Multiobjective optimization
Completely positive optimization
Quadratic programming
Convexification
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Eichfelder, Gabriele
Groetzner, Patrick
- Ereignis
-
Veröffentlichung
- (wer)
-
Springer US
- (wo)
-
New York, NY
- (wann)
-
2021
- DOI
-
doi:10.1007/s10898-021-01091-2
- Letzte Aktualisierung
-
10.03.2025, 11:42 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Artikel
Beteiligte
- Eichfelder, Gabriele
- Groetzner, Patrick
- Springer US
Entstanden
- 2021