Artikel

A note on completely positive relaxations of quadratic problems in a multiobjective framework

In a single-objective setting, nonconvex quadratic problems can equivalently be reformulated as convex problems over the cone of completely positive matrices. In small dimensions this cone equals the cone of matrices which are entrywise nonnegative and positive semidefinite, so the convex reformulation can be solved via SDP solvers. Considering multiobjective nonconvex quadratic problems, naturally the question arises, whether the advantage of convex reformulations extends to the multicriteria framework. In this note, we show that this approach only finds the supported nondominated points, which can already be found by using the weighted sum scalarization of the multiobjective quadratic problem, i.e. it is not suitable for multiobjective nonconvex problems.

Sprache
Englisch

Erschienen in
Journal: Journal of Global Optimization ; ISSN: 1573-2916 ; Volume: 82 ; Year: 2021 ; Issue: 3 ; Pages: 615-626 ; New York, NY: Springer US

Klassifikation
Mathematik
Single Equation Models; Single Variables: Other
Single Equation Models; Single Variables: General
Thema
Multiobjective optimization
Completely positive optimization
Quadratic programming
Convexification

Ereignis
Geistige Schöpfung
(wer)
Eichfelder, Gabriele
Groetzner, Patrick
Ereignis
Veröffentlichung
(wer)
Springer US
(wo)
New York, NY
(wann)
2021

DOI
doi:10.1007/s10898-021-01091-2
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Eichfelder, Gabriele
  • Groetzner, Patrick
  • Springer US

Entstanden

  • 2021

Ähnliche Objekte (12)