Artikel

Non-parametric integral estimation using data clustering in stochastic dynamic programming: An introduction using lifetime financial modelling

This paper considers an alternative way of structuring stochastic variables in a dynamic programming framework where the model structure dictates that numerical methods of solution are necessary. Rather than estimating integrals within a Bellman equation using quadrature nodes, we use nodes directly from the underlying data. An example of the application of this approach is presented using individual lifetime financial modelling. The results show that data-driven methods lead to the least losses in result accuracy compared to quadrature and Quasi-Monte Carlo approaches, using historical data as a base. These results hold for both a single stochastic variable and multiple stochastic variables. The results are significant for improving the computational accuracy of lifetime financial models and other models that employ stochastic dynamic programming.

Language
Englisch

Bibliographic citation
Journal: Risks ; ISSN: 2227-9091 ; Volume: 5 ; Year: 2017 ; Issue: 4 ; Pages: 1-17 ; Basel: MDPI

Classification
Wirtschaft
Subject
data-driven
quadrature
Quasi-Monte Carlo
retirement

Event
Geistige Schöpfung
(who)
Khemka, Gaurav
Butt, Adam
Event
Veröffentlichung
(who)
MDPI
(where)
Basel
(when)
2017

DOI
doi:10.3390/risks5040057
Handle
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Khemka, Gaurav
  • Butt, Adam
  • MDPI

Time of origin

  • 2017

Other Objects (12)