Artikel

Cointegration, root functions and minimal bases

This paper discusses the notion of cointegrating space for linear processes integrated of any order. It first shows that the notions of (polynomial) cointegrating vectors and of root functions coincide. Second, it discusses how the cointegrating space can be defined (i) as a vector space of polynomial vectors over complex scalars, (ii) as a free module of polynomial vectors over scalar polynomials, or finally (iii) as a vector space of rational vectors over rational scalars. Third, it shows that a canonical set of root functions can be used as a basis of the various notions of cointegrating space. Fourth, it reviews results on how to reduce polynomial bases to minimal order - i.e., minimal bases. The application of these results to Vector AutoRegressive processes integrated of order 2 is found to imply the separation of polynomial cointegrating vectors from non-polynomial ones.

Sprache
Englisch

Erschienen in
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 9 ; Year: 2021 ; Issue: 3 ; Pages: 1-27 ; Basel: MDPI

Klassifikation
Wirtschaft
Thema
cointegration
I(d)
VAR
vector spaces

Ereignis
Geistige Schöpfung
(wer)
Franchi, Massimo
Paruolo, Paolo
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2021

DOI
doi:10.3390/econometrics9030031
Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Franchi, Massimo
  • Paruolo, Paolo
  • MDPI

Entstanden

  • 2021

Ähnliche Objekte (12)