Artikel

Deep calibration of financial models: turning theory into practice

The calibration of financial models is laborious, time-consuming and expensive, and needs to be performed frequently by financial institutions. Recently, the application of artificial neural networks (ANNs) for model calibration has gained interest. This paper provides the first comprehensive empirical study on the application of ANNs for calibration based on observed market data. We benchmark the performance of the ANN approach against a real-life calibration framework that is in action at a large financial institution. The ANN based calibration framework shows competitive calibration results, roughly four times faster with less computational efforts. Besides speed and efficiency, the resulting model parameters are found to be more stable over time, enabling more reliable risk reports and business decisions. Furthermore, the calibration framework involves multiple validation steps to counteract regulatory concerns regarding its practical application.

Sprache
Englisch

Erschienen in
Journal: Review of Derivatives Research ; ISSN: 1573-7144 ; Volume: 25 ; Year: 2021 ; Issue: 2 ; Pages: 109-136 ; New York, NY: Springer US

Klassifikation
Wirtschaft
Thema
Deep learning
Derivatives
Model calibration
Interest rate term structure
Global optimizer

Ereignis
Geistige Schöpfung
(wer)
Büchel, Patrick
Kratochwil, Michael
Nagl, Maximilian
Rösch, Daniel
Ereignis
Veröffentlichung
(wer)
Springer US
(wo)
New York, NY
(wann)
2021

DOI
doi:10.1007/s11147-021-09183-7
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Büchel, Patrick
  • Kratochwil, Michael
  • Nagl, Maximilian
  • Rösch, Daniel
  • Springer US

Entstanden

  • 2021

Ähnliche Objekte (12)