Artikel

Forecasting US inflation using Markov dimension switching

This study considers Bayesian variable selection in the Phillips curve context by using the Bernoulli approach of Korobilis (Journal of Applied Econometrics, 2013, 28(2), 204–230). The Bernoulli model, however, is unable to account for model change over time, which is important if the set of relevant predictors changes. To tackle this problem, this paper extends the Bernoulli model by introducing a novel modeling approach called Markov dimension switching (MDS). MDS allows the set of predictors to change over time. It turns out that only a small set of predictors is relevant and that the relevant predictors exhibit a sizable degree of time variation for which the Bernoulli approach is not able to account, stressing the importance and benefit of the MDS approach. In addition, this paper provides empirical evidence that allowing for changing predictors over time is crucial for forecasting inflation.

Language
Englisch

Bibliographic citation
Journal: Journal of Forecasting ; ISSN: 1099-131X ; Volume: 40 ; Year: 2021 ; Issue: 3 ; Pages: 481-499 ; Hoboken, NJ: Wiley

Subject
fat data
model change
Phillips curve
variable selection

Event
Geistige Schöpfung
(who)
Prüser, Jan
Event
Veröffentlichung
(who)
Wiley
(where)
Hoboken, NJ
(when)
2021

DOI
doi:10.1002/for.2723
Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Prüser, Jan
  • Wiley

Time of origin

  • 2021

Other Objects (12)