Machine learning for predicting animal welfare risks in pig farming
Abstract: Animal welfare is a quality indicator of modern pig farming and increasingly important to society. Animal welfare risks have multiple factors and should be recognized and mitigated early on to prevent economic risks. In this work, we use machine learning models to predict animal welfare risks. Our dataset comprises data for over 57,000 pigs with indications of 10 animal welfare risks and 14 suckling phase features. We contribute a prediction model for suckling phase deaths with an accuracy of 80.4% – providing a sizeable improvement over a majority vote‘s accuracy of only 53.1%. The proposed model may help pig farmers to prevent deaths in the suckling phase of pigs at an early stage by taking countermeasure. https://www.landtechnik-online.eu/landtechnik/article/view/3261
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Machine learning for predicting animal welfare risks in pig farming ; volume:76 ; number:1 ; day:11 ; month:03 ; year:2021
Landtechnik ; 76, Heft 1 (11.03.2021)
- Creator
-
Tobias Zimpel
Martin Riekert
Achim Klein
Christa Hoffmann
- DOI
-
10.15150/lt.2021.3261
- URN
-
urn:nbn:de:101:1-2021040721213476309656
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
- 14.08.2025, 10:50 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Tobias Zimpel
- Martin Riekert
- Achim Klein
- Christa Hoffmann