Arbeitspapier

Convex semigroups on Banach lattices

In this paper, we investigate convex semigroups on Banach lattices. First, we consider the case, where the Banach lattice is σ-Dedekind complete and satisfies a monotone convergence property, having Lp-spaces in mind as a typical application. Second, we consider monotone convex semigroups on a Banach lattice, which is a Riesz subspace of a σ-Dedekind complete Banach lattice, where we consider the space of bounded uniformly continuous functions as a typical example. In both cases, we prove the invariance of a suitable domain for the generator under the semigroup. As a consequence, we obtain the uniqueness of the semigroup in terms of the generator. The results are discussed in several examples such as semilinear heat equations (g-expectation), nonlinear integro-differential equations (uncertain compound Poisson processes), fully nonlinear partial differential equations (uncertain shift semigroup and G-expectation).

Sprache
Englisch

Erschienen in
Series: Center for Mathematical Economics Working Papers ; No. 622

Klassifikation
Wirtschaft
Thema
Convex semigroup
nonlinear Cauchy problem
fully nonlinear PDE
well-posedness and uniqueness
Hamilton-Jacobi-Bellman equations

Ereignis
Geistige Schöpfung
(wer)
Denk, Robert
Kupper, Michael
Nendel, Max
Ereignis
Veröffentlichung
(wer)
Bielefeld University, Center for Mathematical Economics (IMW)
(wo)
Bielefeld
(wann)
2019

Handle
URN
urn:nbn:de:0070-pub-29372580
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Denk, Robert
  • Kupper, Michael
  • Nendel, Max
  • Bielefeld University, Center for Mathematical Economics (IMW)

Entstanden

  • 2019

Ähnliche Objekte (12)