Arbeitspapier
Convex semigroups on Banach lattices
In this paper, we investigate convex semigroups on Banach lattices. First, we consider the case, where the Banach lattice is σ-Dedekind complete and satisfies a monotone convergence property, having Lp-spaces in mind as a typical application. Second, we consider monotone convex semigroups on a Banach lattice, which is a Riesz subspace of a σ-Dedekind complete Banach lattice, where we consider the space of bounded uniformly continuous functions as a typical example. In both cases, we prove the invariance of a suitable domain for the generator under the semigroup. As a consequence, we obtain the uniqueness of the semigroup in terms of the generator. The results are discussed in several examples such as semilinear heat equations (g-expectation), nonlinear integro-differential equations (uncertain compound Poisson processes), fully nonlinear partial differential equations (uncertain shift semigroup and G-expectation).
- Sprache
-
Englisch
- Erschienen in
-
Series: Center for Mathematical Economics Working Papers ; No. 622
- Klassifikation
-
Wirtschaft
- Thema
-
Convex semigroup
nonlinear Cauchy problem
fully nonlinear PDE
well-posedness and uniqueness
Hamilton-Jacobi-Bellman equations
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Denk, Robert
Kupper, Michael
Nendel, Max
- Ereignis
-
Veröffentlichung
- (wer)
-
Bielefeld University, Center for Mathematical Economics (IMW)
- (wo)
-
Bielefeld
- (wann)
-
2019
- Handle
- URN
-
urn:nbn:de:0070-pub-29372580
- Letzte Aktualisierung
-
10.03.2025, 11:44 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Denk, Robert
- Kupper, Michael
- Nendel, Max
- Bielefeld University, Center for Mathematical Economics (IMW)
Entstanden
- 2019