Arbeitspapier
Analytic and bootstrap-after-cross-validation methods for selecting penalty parameters of high-dimensional M-estimators
We develop two new methods for selecting the penalty parameter for the e1-penalized high-dimensional M-estimator, which we refer to as the analytic and bootstrap-after-cross-validation methods. For both methods, we derive nonasymptotic error bounds for the corresponding e1-penalized M-estimator and show that the bounds converge to zero under mild conditions, thus providing a theoretical justification for these methods. We demonstrate via simulations that the finite-sample performance of our methods is much better than that of previously available and theoretically justified methods.
- Language
 - 
                Englisch
 
- Bibliographic citation
 - 
                Series: cemmap working paper ; No. CWP03/22
 
- Classification
 - 
                Wirtschaft
 
- Subject
 - 
                Penalty parameter selection
penalized M-estimation
high-dimensional models
sparsity
cross-validation
bootstrap
 
- Event
 - 
                Geistige Schöpfung
 
- (who)
 - 
                Chetverikov, Denis N.
Sørensen, Jesper R.-V.
 
- Event
 - 
                Veröffentlichung
 
- (who)
 - 
                Centre for Microdata Methods and Practice (cemmap)
 
- (where)
 - 
                London
 
- (when)
 - 
                2022
 
- DOI
 - 
                
                    
                        doi:10.47004/wp.cem.2022.0322
 
- Handle
 
- Last update
 - 
                
                    
                        10.03.2025, 11:44 AM CET
 
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
 
Associated
- Chetverikov, Denis N.
 - Sørensen, Jesper R.-V.
 - Centre for Microdata Methods and Practice (cemmap)
 
Time of origin
- 2022