Arbeitspapier
Analytic and bootstrap-after-cross-validation methods for selecting penalty parameters of high-dimensional M-estimators
We develop two new methods for selecting the penalty parameter for the e1-penalized high-dimensional M-estimator, which we refer to as the analytic and bootstrap-after-cross-validation methods. For both methods, we derive nonasymptotic error bounds for the corresponding e1-penalized M-estimator and show that the bounds converge to zero under mild conditions, thus providing a theoretical justification for these methods. We demonstrate via simulations that the finite-sample performance of our methods is much better than that of previously available and theoretically justified methods.
- Sprache
-
Englisch
- Erschienen in
-
Series: cemmap working paper ; No. CWP03/22
- Klassifikation
-
Wirtschaft
- Thema
-
Penalty parameter selection
penalized M-estimation
high-dimensional models
sparsity
cross-validation
bootstrap
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Chetverikov, Denis N.
Sørensen, Jesper R.-V.
- Ereignis
-
Veröffentlichung
- (wer)
-
Centre for Microdata Methods and Practice (cemmap)
- (wo)
-
London
- (wann)
-
2022
- DOI
-
doi:10.47004/wp.cem.2022.0322
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:44 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Chetverikov, Denis N.
- Sørensen, Jesper R.-V.
- Centre for Microdata Methods and Practice (cemmap)
Entstanden
- 2022