Arbeitspapier

Path forecast evaluation

A path forecast refers to the sequence of forecasts 1 to H periods into the future. A summary of the range of possible paths the predicted variable may follow for a given confidence level requires construction of simultaneous confidence regions that adjust for any covariance between the elements of the path forecast. This paper shows how to construct such regions with the joint predictive density and Scheffe's (1953) S-method. In addition, the joint predictive density can be used to construct simple statistics to evaluate the local internal consistency of a forecasting exercise of a system of variables. Monte Carlo simulations demonstrate that these simultaneous confidence regions provide approximately correct coverage in situations where traditional error bands, based on the collection of marginal predictive densities for each horizon, are vastly off mark. The paper showcases these methods with an application to the most recent monetary episode of interest rate hikes in the U.S. macroeconomy.

Language
Englisch

Bibliographic citation
Series: Working Paper ; No. 08-5

Classification
Wirtschaft
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Model Evaluation, Validation, and Selection
Forecasting Models; Simulation Methods

Event
Geistige Schöpfung
(who)
Jordà, Òscar
Marcellino, Massimiliano
Event
Veröffentlichung
(who)
University of California, Department of Economics
(where)
Davis, CA
(when)
2008

Handle
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Jordà, Òscar
  • Marcellino, Massimiliano
  • University of California, Department of Economics

Time of origin

  • 2008

Other Objects (12)