Artikel
Risk assessment for personalized health insurance based on real-world data
The way one leads their life is considered an important factor in health. In this paper we propose a system to provide risk assessment based on behavior for the health insurance sector. To do so we built a platform to collect real-world data that enumerate different aspects of behavior, and a simulator to augment actual data with synthetic. Using the data, we built classifiers to predict variations in important quantities for the lifestyle of a person. We offer a risk assessment service to the health insurance professionals by manipulating the classifier predictions in the long-term. We also address virtual coaching by using explainable Artificial Intelligence (AI) techniques on the classifier itself to gain insights on the advice to be offered to insurance customers.
- Language
-
Englisch
- Bibliographic citation
-
Journal: Risks ; ISSN: 2227-9091 ; Volume: 9 ; Year: 2021 ; Issue: 3 ; Pages: 1-15 ; Basel: MDPI
- Classification
-
Wirtschaft
- Subject
-
classification
explainable AI
machine learning
risk assessment
- Event
-
Geistige Schöpfung
- (who)
-
Pnevmatikakis, Aristodemos
Kanavos, Stathis
Matikas, George
Kostopoulou, Konstantina
Cesario, Alfredo
Kyriazakos, Sophoklēs
- Event
-
Veröffentlichung
- (who)
-
MDPI
- (where)
-
Basel
- (when)
-
2021
- DOI
-
doi:10.3390/risks9030046
- Handle
- Last update
-
10.03.2025, 11:43 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Artikel
Associated
- Pnevmatikakis, Aristodemos
- Kanavos, Stathis
- Matikas, George
- Kostopoulou, Konstantina
- Cesario, Alfredo
- Kyriazakos, Sophoklēs
- MDPI
Time of origin
- 2021