Artikel

Risk assessment for personalized health insurance based on real-world data

The way one leads their life is considered an important factor in health. In this paper we propose a system to provide risk assessment based on behavior for the health insurance sector. To do so we built a platform to collect real-world data that enumerate different aspects of behavior, and a simulator to augment actual data with synthetic. Using the data, we built classifiers to predict variations in important quantities for the lifestyle of a person. We offer a risk assessment service to the health insurance professionals by manipulating the classifier predictions in the long-term. We also address virtual coaching by using explainable Artificial Intelligence (AI) techniques on the classifier itself to gain insights on the advice to be offered to insurance customers.

Language
Englisch

Bibliographic citation
Journal: Risks ; ISSN: 2227-9091 ; Volume: 9 ; Year: 2021 ; Issue: 3 ; Pages: 1-15 ; Basel: MDPI

Classification
Wirtschaft
Subject
classification
explainable AI
machine learning
risk assessment

Event
Geistige Schöpfung
(who)
Pnevmatikakis, Aristodemos
Kanavos, Stathis
Matikas, George
Kostopoulou, Konstantina
Cesario, Alfredo
Kyriazakos, Sophoklēs
Event
Veröffentlichung
(who)
MDPI
(where)
Basel
(when)
2021

DOI
doi:10.3390/risks9030046
Handle
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Pnevmatikakis, Aristodemos
  • Kanavos, Stathis
  • Matikas, George
  • Kostopoulou, Konstantina
  • Cesario, Alfredo
  • Kyriazakos, Sophoklēs
  • MDPI

Time of origin

  • 2021

Other Objects (12)