Kavach: Lightweight masking techniques for polynomial arithmetic in lattice-based cryptography
Abstract: Lattice-based cryptography has laid the foundation of various modern-day cryptosystems that cater to several applications, including post-quantum cryptography. For structured lattice-based schemes, polynomial arithmetic is a fundamental part. In several instances, the performance optimizations come from implementing compact multipliers due to the small range of the secret polynomial coefficients. However, this optimization does not easily translate to side-channel protected implementations since masking requires secret polynomial coefficients to be distributed over a large range. In this work, we address this problem and propose two novel generalized techniques, one for the number theoretic transform (NTT) based and another for the non-NTT-based polynomial arithmetic. Both these proposals enable masked polynomial multiplication while utilizing and retaining the small secret property. For demonstration, we used the proposed technique and instantiated masked multipliers for schoolboo.... https://tches.iacr.org/index.php/TCHES/article/view/10967
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Erschienen in
-
Kavach: Lightweight masking techniques for polynomial arithmetic in lattice-based cryptography ; volume:2023 ; number:3 ; year:2023
IACR transactions on cryptographic hardware and embedded systems ; 2023, Heft 3 (2023)
- Urheber
-
Aikata, Aikata
Basso, Andrea
Cassiers, Gaetan
Mert, Ahmet Can
Sinha Roy, Sujoy
- DOI
-
10.46586/tches.v2023.i3.366-390
- URN
-
urn:nbn:de:101:1-2023102519001224644108
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
- 14.08.2025, 10:52 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Aikata, Aikata
- Basso, Andrea
- Cassiers, Gaetan
- Mert, Ahmet Can
- Sinha Roy, Sujoy