Arbeitspapier

Estimating production functions with robustness against errors in the proxy variables

This paper proposes a new semi-nonparametric maximum likelihood estimation method for estimating production functions. The method extends the literature on structural estimation of production functions, started by the seminal work of Olley and Pakes (1996), by relaxing the scalar-unobservable assumption about the proxy variables. The key additional assumption needed in the identification argument is the existence of two conditionally independent proxy variables. The assumption seems reasonable in many important cases. The new method is straightforward to apply, and a consistent estimate of the asymptotic covariance matrix of the structural parameters can be easily computed.

Language
Englisch

Bibliographic citation
Series: Working Paper ; No. 583

Classification
Wirtschaft
Subject
Produktionsfunktion
Schätztheorie
Nichtparametrisches Verfahren
Panelforschung
Theorie

Event
Geistige Schöpfung
(who)
Huang, Guofang
Hu, Yingyao
Event
Veröffentlichung
(who)
The Johns Hopkins University, Department of Economics
(where)
Baltimore, MD
(when)
2011

Handle
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Huang, Guofang
  • Hu, Yingyao
  • The Johns Hopkins University, Department of Economics

Time of origin

  • 2011

Other Objects (12)