Artikel

Detecting location shifts during model selection by step-indicator saturation

To capture location shifts in the context of model selection, we propose selecting significant step indicators from a saturating set added to the union of all of the candidate variables. The null retention frequency and approximate non-centrality of a selection test are derived using a "split-half" analysis, the simplest specialization of a multiple-path block-search algorithm. Monte Carlo simulations, extended to sequential reduction, confirm the accuracy of nominal significance levels under the null and show retentions when location shifts occur, improving the non-null retention frequency compared to the corresponding impulse-indicator saturation (IIS)-based method and the lasso.

Language
Englisch

Bibliographic citation
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 3 ; Year: 2015 ; Issue: 2 ; Pages: 240-264 ; Basel: MDPI

Classification
Wirtschaft
Model Construction and Estimation
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Subject
structural breaks
model selection
Monte Carlo
indicator saturation
Autometrics

Event
Geistige Schöpfung
(who)
Castle, Jennifer L.
Doornik, Jurgen A.
Hendry, David F.
Pretis, Felix
Event
Veröffentlichung
(who)
MDPI
(where)
Basel
(when)
2015

DOI
doi:10.3390/econometrics3020240
Handle
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Castle, Jennifer L.
  • Doornik, Jurgen A.
  • Hendry, David F.
  • Pretis, Felix
  • MDPI

Time of origin

  • 2015

Other Objects (12)