Arbeitspapier

Estimation Risk and Shrinkage in Vast-Dimensional Fundamental Factor Models

We investigate covariance matrix estimation in vast-dimensional spaces of 1,500 up to 2,000 stocks using fundamental factor models (FFMs). FFMs are the typical benchmark in the asset management industry and depart from the usual statistical factor models and the factor models with observed factors used in the statistical and finance literature. Little is known about estimation risk in FFMs in high dimensions. We investigate whether recent linear and non-linear shrinkage methods help to reduce the estimation risk in the asset return covariance matrix. Our findings indicate that modest improvements are possible using high-dimensional shrinkage techniques. The gains, however, are not realized using standard plug-in shrinkage parameters from the literature, but require sample dependent tuning.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. TI 2018-099/III

Klassifikation
Wirtschaft
Portfolio Choice; Investment Decisions
Multiple or Simultaneous Equation Models: Classification Methods; Cluster Analysis; Principal Components; Factor Models
Financial Econometrics
Large Data Sets: Modeling and Analysis
Thema
Portfolio allocation
high dimensions
linear and non-linear shrinkage
factor models

Ereignis
Geistige Schöpfung
(wer)
van Vlodrop, Andries C.
Lucas, André
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2018

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • van Vlodrop, Andries C.
  • Lucas, André
  • Tinbergen Institute

Entstanden

  • 2018

Ähnliche Objekte (12)