Artikel

The determinants of the U.S. consumer sentiment: Linear and nonlinear models

We examined the determinants of the U.S. consumer sentiment by applying linear and nonlinear models. The data are monthly from 2009 to 2019, covering a large set of financial and nonfinancial variables related to the stock market, personal income, confidence, education, environment, sustainability, and innovation freedom. We show that more than 8.3% of the total of eigenvalues deviate from the Random Matrix Theory (RMT) and might contain pertinent information. Results from linear models show that variables related to the stock market, confidence, personal income, and unemployment explain the U.S. consumer sentiment. To capture nonlinearity, we applied the switching regime model and showed a switch towards a more positive sentiment regarding energy efficiency, unemployment rate, student loan, sustainability, and business confidence. We additionally applied the Gradient Descent Algorithm to compare the errors obtained in linear and nonlinear models, and the results imply a better model with a high predictive power.

Sprache
Englisch

Erschienen in
Journal: International Journal of Financial Studies ; ISSN: 2227-7072 ; Volume: 8 ; Year: 2020 ; Issue: 3 ; Pages: 1-13 ; Basel: MDPI

Klassifikation
Wirtschaft
Relation of Economics to Other Disciplines
Multiple or Simultaneous Equation Models; Multiple Variables: General
Financial Forecasting and Simulation
Behavioral Finance: General‡
General Welfare; Well-Being
Thema
U.S. consumer sentiment
consumer perception
financial markets
cross-correlation
Random Matrix Theory
Switching Regime Regression
Gradient Descent Algorithm

Ereignis
Geistige Schöpfung
(wer)
El Alaoui, Marwane
Bouri, Elie
Azoury, Nehme
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2020

DOI
doi:10.3390/ijfs8030038
Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • El Alaoui, Marwane
  • Bouri, Elie
  • Azoury, Nehme
  • MDPI

Entstanden

  • 2020

Ähnliche Objekte (12)