Artikel

Newton-type methods near critical solutions of piecewise smooth nonlinear equations

It is well-recognized that in the presence of singular (and in particular nonisolated) solutions of unconstrained or constrained smooth nonlinear equations, the existence of critical solutions has a crucial impact on the behavior of various Newton-type methods. On the one hand, it has been demonstrated that such solutions turn out to be attractors for sequences generated by these methods, for wide domains of starting points, and with a linear convergence rate estimate. On the other hand, the pattern of convergence to such solutions is quite special, and allows for a sharp characterization which serves, in particular, as a basis for some known acceleration techniques, and for the proof of an asymptotic acceptance of the unit stepsize. The latter is an essential property for the success of these techniques when combined with a linesearch strategy for globalization of convergence. This paper aims at extensions of these results to piecewise smooth equations, with applications to corresponding reformulations of nonlinear complementarity problems.

Sprache
Englisch

Erschienen in
Journal: Computational Optimization and Applications ; ISSN: 1573-2894 ; Volume: 80 ; Year: 2021 ; Issue: 2 ; Pages: 587-615 ; New York, NY: Springer US

Klassifikation
Mathematik
Dispute Resolution: Strikes, Arbitration, and Mediation; Collective Bargaining
Labor-Management Relations; Industrial Jurisprudence
Civil Law; Common Law
Multiple or Simultaneous Equation Models: Panel Data Models; Spatio-temporal Models
Thema
Piecewise smooth equation
Constrained equation
Complementarity problem
Singular solution
Critical solution
2-regularity

Ereignis
Geistige Schöpfung
(wer)
Fischer, A.
Izmailov, A. F.
Jelitte, M.
Ereignis
Veröffentlichung
(wer)
Springer US
(wo)
New York, NY
(wann)
2021

DOI
doi:10.1007/s10589-021-00306-2
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Fischer, A.
  • Izmailov, A. F.
  • Jelitte, M.
  • Springer US

Entstanden

  • 2021

Ähnliche Objekte (12)