Arbeitspapier
Existence and uniqueness of perturbation solutions to DSGE models
We prove that standard regularity and saddle stability assumptions for linear approximations are sufficient to guarantee the existence of a unique solution for all undetermined coefficients of nonlinear perturbations of arbitrary order to discrete time DSGE models. We derive the perturbation using a matrix calculus that preserves linear algebraic structures to arbitrary orders of derivatives, enabling the direct application of theorems from matrix analysis to prove our main result. As a consequence, we provide insight into several invertibility assumptions from linear solution methods, prove that the local solution is independent of terms first order in the perturbation parameter, and relax the assumptions needed for the local existence theorem of perturbation solutions.
- Sprache
-
Englisch
- Erschienen in
-
Series: SFB 649 Discussion Paper ; No. 2012-015
- Klassifikation
-
Wirtschaft
Optimization Techniques; Programming Models; Dynamic Analysis
Computational Techniques; Simulation Modeling
General Aggregative Models: Forecasting and Simulation: Models and Applications
- Thema
-
perturbation
matrix calculus
DSGE
solution methods
Bézout theorem
Sylvester equations
Dynamisches Gleichgewicht
Matrizenrechnung
Theorie
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Lan, Hong
Meyer-Gohde, Alexander
- Ereignis
-
Veröffentlichung
- (wer)
-
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
- (wo)
-
Berlin
- (wann)
-
2012
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:44 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Lan, Hong
- Meyer-Gohde, Alexander
- Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
Entstanden
- 2012