Arbeitspapier

Existence and uniqueness of perturbation solutions to DSGE models

We prove that standard regularity and saddle stability assumptions for linear approximations are sufficient to guarantee the existence of a unique solution for all undetermined coefficients of nonlinear perturbations of arbitrary order to discrete time DSGE models. We derive the perturbation using a matrix calculus that preserves linear algebraic structures to arbitrary orders of derivatives, enabling the direct application of theorems from matrix analysis to prove our main result. As a consequence, we provide insight into several invertibility assumptions from linear solution methods, prove that the local solution is independent of terms first order in the perturbation parameter, and relax the assumptions needed for the local existence theorem of perturbation solutions.

Sprache
Englisch

Erschienen in
Series: SFB 649 Discussion Paper ; No. 2012-015

Klassifikation
Wirtschaft
Optimization Techniques; Programming Models; Dynamic Analysis
Computational Techniques; Simulation Modeling
General Aggregative Models: Forecasting and Simulation: Models and Applications
Thema
perturbation
matrix calculus
DSGE
solution methods
Bézout theorem
Sylvester equations
Dynamisches Gleichgewicht
Matrizenrechnung
Theorie

Ereignis
Geistige Schöpfung
(wer)
Lan, Hong
Meyer-Gohde, Alexander
Ereignis
Veröffentlichung
(wer)
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
(wo)
Berlin
(wann)
2012

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Lan, Hong
  • Meyer-Gohde, Alexander
  • Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk

Entstanden

  • 2012

Ähnliche Objekte (12)