Multiplicity solutions for a class of p-Laplacian fractional differential equations via variational methods

Abstract: While it is known that one can consider the existence of solutions to boundary-value problems for fractional differential equations with derivative terms, the situations for the multiplicity of weak solutions for the p-Laplacian fractional differential equations with derivative terms are less considered. In this article, we propose a new class of p-Laplacian fractional differential equations with the Caputo derivatives. The multiplicity of weak solutions is proved by the variational method and critical point theorem. At the end of the article, two examples are given to illustrate the validity and practicality of our main results.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Multiplicity solutions for a class of p-Laplacian fractional differential equations via variational methods ; volume:20 ; number:1 ; year:2022 ; pages:959-973 ; extent:15
Open mathematics ; 20, Heft 1 (2022), 959-973 (gesamt 15)

Urheber
Chen, Yiru
Gu, Haibo

DOI
10.1515/math-2022-0484
URN
urn:nbn:de:101:1-2022091314072697139685
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:34 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Chen, Yiru
  • Gu, Haibo

Ähnliche Objekte (12)