Arbeitspapier
Machine learning for labour market matching
This paper develops a large-scale application to improve the labour market matching process with model- and algorithm-based statistical methods. We use comprehensive administrative data on employment biographies covering individual and job-related information of workers in Germany. We estimate the probability that a job seeker gets employed in a certain occupational field. For this purpose, we make predictions with common statistical methods (OLS, Logit) and machine learning (ML) methods. The findings suggest that ML performs best regarding the out-of-sample classification error. In terms of the unemployment rate hypothetically, the advantage of ML compared to the common statistical methods would stand for a diference of 0.3 - 1.0 percentage points.
- Language
-
Englisch
- Bibliographic citation
-
Series: IAB-Discussion Paper ; No. 3/2022
- Classification
-
Wirtschaft
Semiparametric and Nonparametric Methods: General
Neural Networks and Related Topics
Large Data Sets: Modeling and Analysis
Unemployment: Models, Duration, Incidence, and Job Search
- Subject
-
Labour Market
Machine Learning
Matching
Random Forest
- Event
-
Geistige Schöpfung
- (who)
-
Mühlbauer, Sabrina
Weber, Enzo
- Event
-
Veröffentlichung
- (who)
-
Institut für Arbeitsmarkt- und Berufsforschung (IAB)
- (where)
-
Nürnberg
- (when)
-
2022
- DOI
-
doi:10.48720/IAB.DP.2203
- Handle
- Last update
-
10.03.2025, 11:41 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Mühlbauer, Sabrina
- Weber, Enzo
- Institut für Arbeitsmarkt- und Berufsforschung (IAB)
Time of origin
- 2022