Arbeitspapier

Machine learning for labour market matching

This paper develops a large-scale application to improve the labour market matching process with model- and algorithm-based statistical methods. We use comprehensive administrative data on employment biographies covering individual and job-related information of workers in Germany. We estimate the probability that a job seeker gets employed in a certain occupational field. For this purpose, we make predictions with common statistical methods (OLS, Logit) and machine learning (ML) methods. The findings suggest that ML performs best regarding the out-of-sample classification error. In terms of the unemployment rate hypothetically, the advantage of ML compared to the common statistical methods would stand for a diference of 0.3 - 1.0 percentage points.

Language
Englisch

Bibliographic citation
Series: IAB-Discussion Paper ; No. 3/2022

Classification
Wirtschaft
Semiparametric and Nonparametric Methods: General
Neural Networks and Related Topics
Large Data Sets: Modeling and Analysis
Unemployment: Models, Duration, Incidence, and Job Search
Subject
Labour Market
Machine Learning
Matching
Random Forest

Event
Geistige Schöpfung
(who)
Mühlbauer, Sabrina
Weber, Enzo
Event
Veröffentlichung
(who)
Institut für Arbeitsmarkt- und Berufsforschung (IAB)
(where)
Nürnberg
(when)
2022

DOI
doi:10.48720/IAB.DP.2203
Handle
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Mühlbauer, Sabrina
  • Weber, Enzo
  • Institut für Arbeitsmarkt- und Berufsforschung (IAB)

Time of origin

  • 2022

Other Objects (12)