Arbeitspapier
Sequential identification of technological news shocks
In an influential recent paper, Beaudry and Portier (2006) propose a sequential approach for identifying technological news shocks. Thereby, the correlation coefficient between news shocks of a short-run identification scheme and technology shocks of a long-run identification scheme in the VAR framework measures the extent to which news incorporated into forward-looking variables could reflect future technological developments. While structural VARs can potentially provide a useful guide for modelers as well as policy-makers, the ability of such models to recuperate structural shocks in general and news shocks in particular from the data is a contentious issue in the literature. In the current paper, I find by means of Monte Carlo simulations that the sequential approach can be quite successful in recuperating technological news shocks from artificial data.
- Language
-
Englisch
- Bibliographic citation
-
Series: ZEW Discussion Papers ; No. 13-111
- Classification
-
Wirtschaft
Business Fluctuations; Cycles
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- Subject
-
News Shocks
Identification
Structural Vector Autoregressive Model
- Event
-
Geistige Schöpfung
- (who)
-
Seymen, Atılım
- Event
-
Veröffentlichung
- (who)
-
Zentrum für Europäische Wirtschaftsforschung (ZEW)
- (where)
-
Mannheim
- (when)
-
2013
- Handle
- URN
-
urn:nbn:de:bsz:180-madoc-353658
- Last update
-
10.03.2025, 11:42 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Seymen, Atılım
- Zentrum für Europäische Wirtschaftsforschung (ZEW)
Time of origin
- 2013