Artikel

Some results on ℓ1 polynomial trend filtering

ℓ1 polynomial trend filtering, which is a filtering method described as an ℓ1-norm penalized least-squares problem, is promising because it enables the estimation of a piecewise polynomial trend in a univariate economic time series without prespecifying the number and location of knots. This paper shows some theoretical results on the filtering, one of which is that a small modification of the filtering provides not only identical trend estimates as the filtering but also extrapolations of the trend beyond both sample limits.

Language
Englisch

Bibliographic citation
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 6 ; Year: 2018 ; Issue: 3 ; Pages: 1-10 ; Basel: MDPI

Classification
Wirtschaft
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Subject
ℓ1 trend filtering
Hodrick–Prescott filtering
Whittaker–Henderson method of graduation
Lasso regression
basis pursuit denoising
total variation denoising

Event
Geistige Schöpfung
(who)
Yamada, Hiroshi
Du, Ruixue
Event
Veröffentlichung
(who)
MDPI
(where)
Basel
(when)
2018

DOI
doi:10.3390/econometrics6030033
Handle
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Yamada, Hiroshi
  • Du, Ruixue
  • MDPI

Time of origin

  • 2018

Other Objects (12)