Linear classification of healthy people and patients with valvular heart diseases based on heart rate variability indices derived from electrocardiograms

Abstract: Heart rate variability (HRV) is an important marker in various cardiovascular and non-cardiovascular conditions. This study aimed to evaluate the effectiveness of three linear models (Logistic Regression, Ridge Regression, Support Vector Machine) in distinguishing between healthy individuals and those with valvular heart diseases (VHD) using time domain and frequency domain HRV indices derived from electrocardiographic (ECG) signals. We analyzed 59 recordings taken from two public datasets containing electrocardiographic, seismocardiographic, and gyrocardiographic signals from “Mechanocardiograms with ECG reference” and “An Open-access Database for the Evaluation of Cardio-mechanical Signals from Patients with Valvular Heart Diseases” that contain 29 and 30 recordings, respectively. HRV analysis included time and frequency domain indices and the linear models were evaluated using 5-fold stratified cross-validation. The highest sensitivity, PPV, accuracy and F1 score were observed for Logistic Regression (0.8810, 0.8819, 0.8814, 0.8812), followed by Ridge Regression (0.8805, 0.8858, 0.8814, 0.8808), and the lowest were observed for linear SVM (0.8310, 0.8318, 0.8305, 0.8305). The results showed that it is possible to distinguish healthy volunteers and patients with linear classifiers and time domain and frequency domain HRV indices obtained from ECG signals with decent performance.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Linear classification of healthy people and patients with valvular heart diseases based on heart rate variability indices derived from electrocardiograms ; volume:10 ; number:4 ; year:2024 ; pages:587-590 ; extent:4
Current directions in biomedical engineering ; 10, Heft 4 (2024), 587-590 (gesamt 4)

Urheber
Siecinski, Szymon
Doniec, Rafal Jan
Grzegorzek, Marcin

DOI
10.1515/cdbme-2024-2144
URN
urn:nbn:de:101:1-2412181730345.957895778399
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:29 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Siecinski, Szymon
  • Doniec, Rafal Jan
  • Grzegorzek, Marcin

Ähnliche Objekte (12)