GraphProt: modeling binding preferences of RNA-binding proteins

Abstract: We present GraphProt, a computational framework for learning sequence- and structure-binding preferences of RNA-binding proteins (RBPs) from high-throughput experimental data. We benchmark GraphProt, demonstrating that the modeled binding preferences conform to the literature, and showcase the biological relevance and two applications of GraphProt models. First, estimated binding affinities correlate with experimental measurements. Second, predicted Ago2 targets display higher levels of expression upon Ago2 knockdown, whereas control targets do not. Computational binding models, such as those provided by GraphProt, are essential for predicting RBP binding sites and affinities in all tissues. GraphProt is freely available at http://www.bioinf.uni-freiburg.de/Software/GraphProt

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch
Notes
Genome biology. - 15 (2014) , R17, ISSN: 1474-760X

Event
Veröffentlichung
(where)
Freiburg
(who)
Universität
(when)
2017

DOI
10.1186/gb-2014-15-1-r17
URN
urn:nbn:de:bsz:25-freidok-124825
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
25.03.2025, 1:44 PM CET

Other Objects (12)