Optimal bandwidth selection for recursive Gumbel kernel density estimators

Abstract: In this paper, we propose a data driven bandwidth selection of the recursive Gumbel kernel estimators of a probability density function based on a stochastic approximation algorithm. The choice of the bandwidth selection approaches is investigated by a second generation plug-in method. Convergence properties of the proposed recursive Gumbel kernel estimators are established. The uniform strong consistency of the proposed recursive Gumbel kernel estimators is derived. The new recursive Gumbel kernel estimators are compared to the non-recursive Gumbel kernel estimator and the performance of the two estimators are illustrated via simulations as well as a real application.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Optimal bandwidth selection for recursive Gumbel kernel density estimators ; volume:7 ; number:1 ; year:2019 ; pages:375-393 ; extent:19
Dependence modeling ; 7, Heft 1 (2019), 375-393 (gesamt 19)

Creator
Slaoui, Yousri

DOI
10.1515/demo-2019-0020
URN
urn:nbn:de:101:1-2411181555236.664460161901
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:22 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Slaoui, Yousri

Other Objects (12)