Artikel

Quantifying the data-dredging bias in structural break tests

Structural break tests are often applied as a pre-step to ensure the validity of subsequent statistical analyses. Without any a priori knowledge of the type of breaks to expect, eye-balling the data can indicate changes in some parameter, e.g., the mean. This, however, can distort the result of a structural break test for that parameter, because the data themselves suggested the hypothesis. In this paper, we formalize the eye-balling procedure and theoretically derive the implied size distortion of the structural break test. We also show that eye-balling a stretch of historical data for possible changes in a parameter does not invalidate the subsequent procedure that monitors for structural change in new incoming observations. An empirical application to Bitcoin returns shows that taking into account the data-dredging bias, which is incurred by looking at the data, can lead to different test decisions.

Sprache
Englisch

Erschienen in
Journal: Statistical Papers ; ISSN: 1613-9798 ; Volume: 63 ; Year: 2021 ; Issue: 1 ; Pages: 143-155 ; Berlin, Heidelberg: Springer

Klassifikation
Mathematik
Hypothesis Testing: General
Methodological Issues: General
Thema
Data-dredging bias
Hypothesis test
Monitoring
Structural breaks

Ereignis
Geistige Schöpfung
(wer)
Hoga, Yannick
Ereignis
Veröffentlichung
(wer)
Springer
(wo)
Berlin, Heidelberg
(wann)
2021

DOI
doi:10.1007/s00362-021-01233-4
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Hoga, Yannick
  • Springer

Entstanden

  • 2021

Ähnliche Objekte (12)