Arbeitspapier

The merit of high-frequency data in portfolio allocation

This paper addresses the open debate about the usefulness of high-frequency (HF) data in large-scale portfolio allocation. Daily covariances are estimated based on HF data of the S&P 500 universe employing a blocked realized kernel estimator. We propose forecasting covariance matrices using a multi-scale spectral decomposition where volatilities, correlation eigenvalues and eigenvectors evolve on different frequencies. In an extensive out-of-sample forecasting study, we show that the proposed approach yields less risky and more diversified portfolio allocations as prevailing methods employing daily data. These performance gains hold over longer horizons than previous studies have shown.

Language
Englisch

Bibliographic citation
Series: CFS Working Paper ; No. 2011/24

Classification
Wirtschaft
Portfolio Choice; Investment Decisions
Financial Forecasting and Simulation
Financial Econometrics
Semiparametric and Nonparametric Methods: General
Multiple or Simultaneous Equation Models: Classification Methods; Cluster Analysis; Principal Components; Factor Models
Subject
Spectral Decomposition
Mixing Frequencies
Factor Model
Blocked Realized Kernel
Covariance Prediction
Portfolio Optimization
Portfolio-Management
Zeitreihenanalyse
Korrelation
Prognoseverfahren
Theorie

Event
Geistige Schöpfung
(who)
Hautsch, Nikolaus
Kyj, Lada M.
Malec, Peter
Event
Veröffentlichung
(who)
Goethe University Frankfurt, Center for Financial Studies (CFS)
(where)
Frankfurt a. M.
(when)
2011

Handle
URN
urn:nbn:de:hebis:30:3-228716
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Hautsch, Nikolaus
  • Kyj, Lada M.
  • Malec, Peter
  • Goethe University Frankfurt, Center for Financial Studies (CFS)

Time of origin

  • 2011

Other Objects (12)