Sparse discretization of sparse control problems
Abstract: We consider optimal control problems that inherit a sparsity structure, especially we look at problems governed by measure controls. Our goal is to achieve maximal sparsity on the discrete level. We use variational discretization of the control problems utilizing a Petrov‐Galerkin approximation of the state, which induces controls that are composed of Dirac measures. In the parabolic case this allows us to achieve sparsity on the discrete level in space and time. Numerical experiments show the differences of this approach to a full discretization approach.
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Erschienen in
-
Sparse discretization of sparse control problems ; volume:19 ; number:1 ; year:2019 ; extent:2
Proceedings in applied mathematics and mechanics ; 19, Heft 1 (2019) (gesamt 2)
- Urheber
-
Herberg, Evelyn
Hinze, Michael
Schumacher, Henrik
- DOI
-
10.1002/pamm.201900105
- URN
-
urn:nbn:de:101:1-2022072208425841465830
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
- 15.08.2025, 07:25 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Herberg, Evelyn
- Hinze, Michael
- Schumacher, Henrik