Konferenzbeitrag
A panel cointegration rank test with structural breaks and cross-sectional dependence
This paper proposes a new likelihood-based panel cointegration rank test which allows for a linear time trend with heterogeneous breaks and cross sectional dependence. It is based on a novel modification of the inverse normal method which combines the p-values of the individual likelihood-ratio trace statistics of Trenkler et al. (2007). We call this new test a correlation augmented inverse normal (CAIN) test. It infers the unknown correlation between the probits of the individual p-values from an estimate of the average absolute correlation between the VAR processes' innovations, which is readily observable in practice. A Monte Carlo study demonstrates that this simple test is robust to various degrees of cross-sectional dependence generated by common factors. It has better size and power properties than other meta-analytic tests in panels with dimensions typically encountered in macroeconometric analysis.
- Language
-
Englisch
- Bibliographic citation
-
Series: Beiträge zur Jahrestagung des Vereins für Socialpolitik 2016: Demographischer Wandel - Session: Time Series Econometrics ; No. D01-V3
- Classification
-
Wirtschaft
Hypothesis Testing: General
Statistical Simulation Methods: General
Multiple or Simultaneous Equation Models: Panel Data Models; Spatio-temporal Models
- Event
-
Geistige Schöpfung
- (who)
-
Karaman Örsal, Deniz Dilan
Arsova, Antonia
- Event
-
Veröffentlichung
- (who)
-
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften, Leibniz-Informationszentrum Wirtschaft
- (where)
-
Kiel und Hamburg
- (when)
-
2016
- Handle
- Last update
-
10.03.2025, 11:41 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Konferenzbeitrag
Associated
- Karaman Örsal, Deniz Dilan
- Arsova, Antonia
- ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften, Leibniz-Informationszentrum Wirtschaft
Time of origin
- 2016