Artikel
A machine learning integrated portfolio rebalance framework with risk-aversion adjustment
We propose a portfolio rebalance framework that integrates machine learning models into the mean-risk portfolios in multi-period settings with risk-aversion adjustment. In each period, the risk-aversion coefficient is adjusted automatically according to market trend movements predicted by machine learning models. We employ Gini's Mean Difference (GMD) to specify the risk of a portfolio and use a set of technical indicators generated from a market index (e.g., S&P 500 index) to feed the machine learning models to predict market movements. Using a rolling-horizon approach, we conduct a series of computational tests with real financial data to evaluate the performance of the machine learning integrated portfolio rebalance framework. The empirical results show that the XGBoost model provides the best prediction of market movement, while the proposed portfolio rebalance strategy generates portfolios with superior out-of-sample performances in terms of average returns, time-series cumulative returns, and annualized returns compared to the benchmarks.
- Language
-
Englisch
- Bibliographic citation
-
Journal: Journal of Risk and Financial Management ; ISSN: 1911-8074 ; Volume: 13 ; Year: 2020 ; Issue: 7 ; Pages: 1-20 ; Basel: MDPI
- Classification
-
Wirtschaft
- Subject
-
information fusion
machine learning models
Mean-Gini model
portfolio optimization
risk-aversion coefficient
technical indicators
- Event
-
Geistige Schöpfung
- (who)
-
Jiang, Zhenlong
Ji, Ran
Chang, Kuo-Chu
- Event
-
Veröffentlichung
- (who)
-
MDPI
- (where)
-
Basel
- (when)
-
2020
- DOI
-
doi:10.3390/jrfm13070155
- Handle
- Last update
-
10.03.2025, 11:44 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Artikel
Associated
- Jiang, Zhenlong
- Ji, Ran
- Chang, Kuo-Chu
- MDPI
Time of origin
- 2020