Arbeitspapier

Estimation of DSGE models: Maximum likelihood vs. Bayesian methods

DSGE models are typically estimated using Bayesian methods, but a researcher may want to estimate a DSGE model with full information maximum likelihood (FIML) so as to avoid the use of prior distributions. A very robust algorithm is needed to find the global maximum within the relevant parameter space. I suggest such an algorithm and show that it is possible to estimate the model of Smets and Wouters (2007) using FIML. Inference is carried out using stochastic bootstrapping techniques. Several FIML estimates turn out to be significantly different from the Bayesian estimates and the reasons behind those differences are analyzed.

Sprache
Englisch

Erschienen in
Series: Working Paper ; No. 2015:6

Klassifikation
Wirtschaft
Bayesian Analysis: General
Business Fluctuations; Cycles
Prices, Business Fluctuations, and Cycles: Forecasting and Simulation: Models and Applications
Thema
Bayesian methods
Maximum likelihood
Business Cycles
Estimate DSGE models

Ereignis
Geistige Schöpfung
(wer)
Mickelsson, Glenn
Ereignis
Veröffentlichung
(wer)
Uppsala University, Department of Economics
(wo)
Uppsala
(wann)
2015

Handle
URN
urn:nbn:se:uu:diva-270200
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Mickelsson, Glenn
  • Uppsala University, Department of Economics

Entstanden

  • 2015

Ähnliche Objekte (12)