Arbeitspapier
Estimation of DSGE models: Maximum likelihood vs. Bayesian methods
DSGE models are typically estimated using Bayesian methods, but a researcher may want to estimate a DSGE model with full information maximum likelihood (FIML) so as to avoid the use of prior distributions. A very robust algorithm is needed to find the global maximum within the relevant parameter space. I suggest such an algorithm and show that it is possible to estimate the model of Smets and Wouters (2007) using FIML. Inference is carried out using stochastic bootstrapping techniques. Several FIML estimates turn out to be significantly different from the Bayesian estimates and the reasons behind those differences are analyzed.
- Sprache
- 
                Englisch
 
- Erschienen in
- 
                Series: Working Paper ; No. 2015:6
 
- Klassifikation
- 
                Wirtschaft
 Bayesian Analysis: General
 Business Fluctuations; Cycles
 Prices, Business Fluctuations, and Cycles: Forecasting and Simulation: Models and Applications
 
- Thema
- 
                Bayesian methods
 Maximum likelihood
 Business Cycles
 Estimate DSGE models
 
- Ereignis
- 
                Geistige Schöpfung
 
- (wer)
- 
                Mickelsson, Glenn
 
- Ereignis
- 
                Veröffentlichung
 
- (wer)
- 
                Uppsala University, Department of Economics
 
- (wo)
- 
                Uppsala
 
- (wann)
- 
                2015
 
- Handle
- URN
- 
                
                    
                        urn:nbn:se:uu:diva-270200
- Letzte Aktualisierung
- 
                
                    
                        10.03.2025, 11:44 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Mickelsson, Glenn
- Uppsala University, Department of Economics
Entstanden
- 2015
 
        
    