Artikel

A copula-based multivariate hidden Markov model for modelling momentum in football

We investigate the potential occurrence of change points—commonly referred to as “momentum shifts”—in the dynamics of football matches. For that purpose, we model minute-by-minute in-game statistics of Bundesliga matches using hidden Markov models (HMMs). To allow for within-state dependence of the variables, we formulate multivariate state-dependent distributions using copulas. For the Bundesliga data considered, we find that the fitted HMMs comprise states which can be interpreted as a team showing different levels of control over a match. Our modelling framework enables inference related to causes of momentum shifts and team tactics, which is of much interest to managers, bookmakers, and sports fans.

Sprache
Englisch

Erschienen in
Journal: AStA Advances in Statistical Analysis ; ISSN: 1863-818X ; Volume: 107 ; Year: 2021 ; Issue: 1-2 ; Pages: 9-27 ; Berlin, Heidelberg: Springer

Klassifikation
Mathematik
Thema
Statistics, general
Statistics for Business, Management, Economics, Finance, Insurance
Probability Theory and Stochastic Processes
Econometrics

Ereignis
Geistige Schöpfung
(wer)
Ötting, Marius
Langrock, Roland
Maruotti, Antonello
Ereignis
Veröffentlichung
(wer)
Springer
(wo)
Berlin, Heidelberg
(wann)
2021

DOI
doi:10.1007/s10182-021-00395-8
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Ötting, Marius
  • Langrock, Roland
  • Maruotti, Antonello
  • Springer

Entstanden

  • 2021

Ähnliche Objekte (12)