Artikel

Bayesian online change point detection in finance

It is quite common that the structure of a time series changes abruptly. Identifying these change points and describing the model structure in the segments between these change points is an important task in financial time series analysis. Change point detection is the identification of abrupt changes in the generative parameters of sequential data. In application areas such as finance, online rather than offline detection of change points in time series is mostly required, due to their use in predictive tasks, possibly embedded in automatic trading systems. However, the complex structure of the data generation processes makes this a challenging endeavor. This paper is concerned with online change point detection in financial time series using the Bayesian setting. To this end, the Bayesian posterior probability of change at a specific time is proposed and some procedures are presented for selecting the priors and estimation of parameters. Applications in simulated financial time series are given. Finally, conclusions are proposed.

Sprache
Englisch

Erschienen in
Journal: Financial Internet Quarterly ; ISSN: 2719-3454 ; Volume: 17 ; Year: 2021 ; Issue: 4 ; Pages: 27-33 ; Warsaw: Sciendo

Klassifikation
Wirtschaft
Financial Forecasting and Simulation
Thema
Bayesian setting
change point
financial time series
online detection
probability of change

Ereignis
Geistige Schöpfung
(wer)
Habibi, Reza
Ereignis
Veröffentlichung
(wer)
Sciendo
(wo)
Warsaw
(wann)
2021

DOI
doi:10.2478/fiqf-2021-0025
Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Habibi, Reza
  • Sciendo

Entstanden

  • 2021

Ähnliche Objekte (12)