Arbeitspapier
Identification in a binary choice panel data model with a predetermined covariate
We study identification in a binary choice panel data model with a single predetermined binary covariate (i.e., a covariate sequentially exogenous conditional on lagged outcomes and covariates). The choice model is indexed by a scalar parameter θ, whereas the distribution of unit-specific heterogeneity, as well as the feedback process that maps lagged outcomes into future covariate realizations, are left unrestricted. We provide a simple condition under which θ is never point-identified, no matter the number of time periods available. This condition is satisfied in most models, including the logit one. We also characterize the identified set of θ and show how to compute it using linear programming techniques. While θ is not generally point-identified, its identified set is informative in the examples we analyze numerically, suggesting that meaningful learning about θ is possible even in short panels with feedback.
- Sprache
-
Englisch
- Erschienen in
-
Series: cemmap working paper ; No. CWP01/23
- Klassifikation
-
Wirtschaft
Single Equation Models; Single Variables: Panel Data Models; Spatio-temporal Models
Multiple or Simultaneous Equation Models: Panel Data Models; Spatio-temporal Models
- Thema
-
Sequential Moment Conditions
Feedback
Panel Data
Incidental Parameters
Partial Identification
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Bonhomme, Stéphane
Dano, Kevin
Graham, Bryan S.
- Ereignis
-
Veröffentlichung
- (wer)
-
Centre for Microdata Methods and Practice (cemmap)
- (wo)
-
London
- (wann)
-
2023
- DOI
-
doi:10.47004/wp.cem.2023.0123
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:42 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Bonhomme, Stéphane
- Dano, Kevin
- Graham, Bryan S.
- Centre for Microdata Methods and Practice (cemmap)
Entstanden
- 2023