Arbeitspapier

Identification in a binary choice panel data model with a predetermined covariate

We study identification in a binary choice panel data model with a single predetermined binary covariate (i.e., a covariate sequentially exogenous conditional on lagged outcomes and covariates). The choice model is indexed by a scalar parameter θ, whereas the distribution of unit-specific heterogeneity, as well as the feedback process that maps lagged outcomes into future covariate realizations, are left unrestricted. We provide a simple condition under which θ is never point-identified, no matter the number of time periods available. This condition is satisfied in most models, including the logit one. We also characterize the identified set of θ and show how to compute it using linear programming techniques. While θ is not generally point-identified, its identified set is informative in the examples we analyze numerically, suggesting that meaningful learning about θ is possible even in short panels with feedback.

Sprache
Englisch

Erschienen in
Series: cemmap working paper ; No. CWP01/23

Klassifikation
Wirtschaft
Single Equation Models; Single Variables: Panel Data Models; Spatio-temporal Models
Multiple or Simultaneous Equation Models: Panel Data Models; Spatio-temporal Models
Thema
Sequential Moment Conditions
Feedback
Panel Data
Incidental Parameters
Partial Identification

Ereignis
Geistige Schöpfung
(wer)
Bonhomme, Stéphane
Dano, Kevin
Graham, Bryan S.
Ereignis
Veröffentlichung
(wer)
Centre for Microdata Methods and Practice (cemmap)
(wo)
London
(wann)
2023

DOI
doi:10.47004/wp.cem.2023.0123
Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Bonhomme, Stéphane
  • Dano, Kevin
  • Graham, Bryan S.
  • Centre for Microdata Methods and Practice (cemmap)

Entstanden

  • 2023

Ähnliche Objekte (12)