Arbeitspapier

Kernel smoothed prediction intervals for ARMA models

The procedures of estimating prediction intervals for ARMA processes can be divided into model based methods and empirical methods. Model based methods require knowledge of the model and the underlying innovation distribution. Empirical methods are based on the sample forecast errors. In this paper we apply nonparametric quantile regression to the empirical forecast errors using lead time as regressor. With this method there is no need for a distribution assumption. But for the data pattern in this case a double kernel method which allows smoothing in two directions is required. An estimation algorithm is presented and applied to some simulation examples.

Sprache
Englisch

Erschienen in
Series: CoFE Discussion Paper ; No. 02/02

Klassifikation
Wirtschaft
Thema
Forecasting
Prediction intervals
Non normal distributions
Nonparametric estimation
Quantile regression
Theorie
ARMA-Modell

Ereignis
Geistige Schöpfung
(wer)
Abberger, Klaus
Ereignis
Veröffentlichung
(wer)
University of Konstanz, Center of Finance and Econometrics (CoFE)
(wo)
Konstanz
(wann)
2002

Handle
URN
urn:nbn:de:bsz:352-opus-7817
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Abberger, Klaus
  • University of Konstanz, Center of Finance and Econometrics (CoFE)

Entstanden

  • 2002

Ähnliche Objekte (12)