Konferenzbeitrag

Predictive Features for Detecting Indefinite Polar Sentences

In recent years, text classification in sentiment analysis has mostly focused on two types of classification, the distinction between objective and subjective text, i.e. subjectivity detection, and the distinction between positive and negative subjective text, i.e. polarity classification. So far, there has been little work examining the distinction between definite polar subjectivity and indefinite polar subjectivity. While the former are utterances which can be categorized as either positive or negative, the latter cannot be categorized as either of these two categories. This paper presents a small set of domain independent features to detect indefinite polar sentences. The features reflect the linguistic structure underlying these types of utterances. We give evidence for the effectiveness of these features by incorporating them into an unsupervised rule-based classifier for sentence-level analysis and compare its performance with supervised machine learning classifiers, i.e. Support Vector Machines (SVMs) and Nearest Neighbor Classifier (kNN). The data used for the experiments are web-reviews collected from three different domains.

Predictive Features for Detecting Indefinite Polar Sentences

Urheber*in: Wiegand, Michael; Klakow, Dietrich

Namensnennung 4.0 International

0
/
0

Sprache
Englisch

Thema
Computerlinguistik
Information Extraction
Polarität
Natürliche Sprache
Maschinelles Lernen
Sprache

Ereignis
Geistige Schöpfung
(wer)
Wiegand, Michael
Klakow, Dietrich
Ereignis
Veröffentlichung
(wer)
Paris : European Language Resources Association
(wann)
2019-02-21

URN
urn:nbn:de:bsz:mh39-85052
Letzte Aktualisierung
06.03.2025, 09:00 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Leibniz-Institut für Deutsche Sprache - Bibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Konferenzbeitrag

Beteiligte

  • Wiegand, Michael
  • Klakow, Dietrich
  • Paris : European Language Resources Association

Entstanden

  • 2019-02-21

Ähnliche Objekte (12)