Arbeitspapier
A severity function approach to scenario selection
The severity function approach (abbreviated SFA) is a method of selecting adverse scenarios from a multivariate density. It requires the scenario user (e.g. an agency that runs banking sector stress tests) to specify a "severity function", which maps candidate scenarios into a scalar severity metric. The higher the value of this metric, the more harmful a scenario is. In selecting a scenario the SFA proceeds as follows: First, it isolates a set of equally severe scenario candidates. This set is determined by the condition that more severe scenarios only occur with some user-specified probability. Second, from this set it selects the candidate with the highest probability density, i.e. the most plausible scenario. The approach hence operationalizes the mantra that "scenarios should be severe yet plausible".
- ISBN
-
978-3-95729-409-8
- Language
-
Englisch
- Bibliographic citation
-
Series: Bundesbank Discussion Paper ; No. 34/2017
- Classification
-
Wirtschaft
Bayesian Analysis: General
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Forecasting Models; Simulation Methods
Optimization Techniques; Programming Models; Dynamic Analysis
Financial Crises
Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
- Subject
-
Stress Testing
Conditional Forecasting
Density Forecasting
Time series
Bayesian VAR
Simulation
- Event
-
Geistige Schöpfung
- (who)
-
Mokinski, Frieder
- Event
-
Veröffentlichung
- (who)
-
Deutsche Bundesbank
- (where)
-
Frankfurt a. M.
- (when)
-
2017
- Handle
- Last update
-
10.03.2025, 11:44 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Mokinski, Frieder
- Deutsche Bundesbank
Time of origin
- 2017