Konferenzbeitrag

Forecasting regional labour markets in Germany: an evaluation of the performance of neural network analysis

The aim of the present paper is to forecast regional employment developments in the 327 West-German districts. Using a Neural Networks (NNs) methodology we try to identify the existence of underlying structural relationships between the input variables - data on regional and sectoral employment and wages - and the future development of employment at a district level. In order to offer reliable forecasts for the years 2000 and 2001, a variety of NN models has been developed and compared. The emerging results confirm the ability of NNs in capturing the complex data structures - in the training and test phases - and hence in 'extrapolating' useful information in a multi-regional context. Concerning the forecasting phases, our analysis highlights the necessity of carrying out further research experiments - by introducing additional economic background variables - in order to get more insight into the mechanism and structure of spatio-temporal employment data.

Sprache
Englisch

Erschienen in
Series: 42nd Congress of the European Regional Science Association: "From Industry to Advanced Services - Perspectives of European Metropolitan Regions", August 27th - 31st, 2002, Dortmund, Germany

Klassifikation
Wirtschaft

Ereignis
Geistige Schöpfung
(wer)
Longhi, Simonetta
Nijkamp, Peter
Reggiani, Aura
Blien, Uwe
Ereignis
Veröffentlichung
(wer)
European Regional Science Association (ERSA)
(wo)
Louvain-la-Neuve
(wann)
2002

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Konferenzbeitrag

Beteiligte

  • Longhi, Simonetta
  • Nijkamp, Peter
  • Reggiani, Aura
  • Blien, Uwe
  • European Regional Science Association (ERSA)

Entstanden

  • 2002

Ähnliche Objekte (12)