Artikel

Comparison of imputation methods for handling missing categorical data with univariate pattern

This paper examines the sample proportions estimates in the presence of univariate missing categorical data. A database about smoking habits (2011 National Addiction Survey of Mexico) was used to create simulated yet realistic datasets at rates 5% and 15% of missingness, each for MCAR, MAR and MNAR mechanisms. Then the performance of six methods for addressing missingness is evaluated: listwise, mode imputation, random imputation, hot-deck, imputation by polytomous regression and random forests. Results showed that the most effective methods for dealing with missing categorical data in most of the scenarios assessed in this paper were hot-deck and polytomous regression approaches.

Language
Englisch

Bibliographic citation
Journal: Revista de Métodos Cuantitativos para la Economía y la Empresa ; ISSN: 1886-516X ; Volume: 17 ; Year: 2014 ; Pages: 101-120 ; Sevilla: Universidad Pablo de Olavide

Classification
Wirtschaft
Methodological Issues: General
Data Collection and Data Estimation Methodology; Computer Programs: General
Survey Methods; Sampling Methods
Subject
imputation methods
hot-deck
polytomous regression
random forests
smoking habits
missing categorical data

Event
Geistige Schöpfung
(who)
Torres Munguía, Juan Armando
Event
Veröffentlichung
(who)
Universidad Pablo de Olavide
(where)
Sevilla
(when)
2014

Handle
Last update
10.03.2025, 11:46 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Torres Munguía, Juan Armando
  • Universidad Pablo de Olavide

Time of origin

  • 2014

Other Objects (12)