Arbeitspapier

Maximal uniform convergence rates in parametric estimation problems

This paper considers parametric estimation problems with i.i.d. data. It focusses on rate-effciency, in the sense of maximal possible convergence rates of stochastically bounded estimators, as an optimality criterion, largely unexplored in parametric estimation. Under mild conditions, the Hellinger metric, defined on the space of parametric probability measures, is shown to be an essentially universally applicable tool to determine maximal possible convergence rates.

Language
Englisch

Bibliographic citation
Series: cemmap working paper ; No. CWP06/05

Classification
Wirtschaft
Estimation: General
Subject
parametric estimators , uniform convergence , Hellinger distance , Locally Asymptotically Quadratic (LAQ) Families
Schätztheorie
Statistischer Test

Event
Geistige Schöpfung
(who)
Beckert, Walter
McFadden, Daniel L.
Event
Veröffentlichung
(who)
Centre for Microdata Methods and Practice (cemmap)
(where)
London
(when)
2005

DOI
doi:10.1920/wp.cem.2005.0605
Handle
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Beckert, Walter
  • McFadden, Daniel L.
  • Centre for Microdata Methods and Practice (cemmap)

Time of origin

  • 2005

Other Objects (12)