Arbeitspapier

A generalization of Tyler's M-estimators to the case of incomplete data

Many different robust estimation approaches for the covariance or shape matrix of multivariate data have been established until today. Tyler's M-estimator has been recognized as the 'most robust' M-estimator for the shape matrix of elliptically symmetric distributed data. Tyler's Mestimators for location and shape are generalized by taking account of incomplete data. It is shown that the shape matrix estimator remains distribution-free under the class of generalized elliptical distributions. Its asymptotic distribution is also derived and a fast algorithm, which works well even for high-dimensional data, is presented. A simulation study with clean and contaminated data covers the complete-data as well as the incomplete-data case, where the missing data are assumed to be MCAR, MAR, and NMAR.

Sprache
Englisch

Erschienen in
Series: Discussion Papers in Statistics and Econometrics ; No. 3/07

Klassifikation
Wirtschaft
Crisis Management
Taxation, Subsidies, and Revenue: General
Thema
covariance matrix
distribution-free estimation
missing data
robust estimation
shape matrix
sign-based estimator
Tyler's M-estimator

Ereignis
Geistige Schöpfung
(wer)
Frahm, Gabriel
Jaekel, Uwe
Ereignis
Veröffentlichung
(wer)
University of Cologne, Seminar of Economic and Social Statistics
(wo)
Cologne
(wann)
2009

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Frahm, Gabriel
  • Jaekel, Uwe
  • University of Cologne, Seminar of Economic and Social Statistics

Entstanden

  • 2009

Ähnliche Objekte (12)