Functional-discrete Method for Eigenvalue Transmission Problem with Periodic Boundary Conditions
Abstract: We apply a functional-discrete method with convergence rate not worse than that of a geometric series for an eigenvalue transmission problem with periodic boundary conditions. It is shown that the convergence rate increases with an increase in the ordinal number of trial eigenvalue. Based on asymptotic behavior of eigenvalues of the basic problem and the functional-discrete method, qualitative results concerning the arrangement of the eigenvalues of the original eigenvalue transmission problem with periodic boundary conditions are proved. A number of numerical examples are given to support the theory.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Functional-discrete Method for Eigenvalue Transmission Problem with Periodic Boundary Conditions ; volume:5 ; number:2 ; year:2005 ; pages:201-220
Computational methods in applied mathematics ; 5, Heft 2 (2005), 201-220
- Creator
-
Makarov, V. L.
Rossokhata, N. O.
Bandyrsiĭ, B. Ĭ.
- DOI
-
10.2478/cmam-2005-0010
- URN
-
urn:nbn:de:101:1-2410261619287.311685586933
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
05.11.0002, 3:26 PM CET
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Makarov, V. L.
- Rossokhata, N. O.
- Bandyrsiĭ, B. Ĭ.