Functional-discrete Method for Eigenvalue Transmission Problem with Periodic Boundary Conditions

Abstract: We apply a functional-discrete method with convergence rate not worse than that of a geometric series for an eigenvalue transmission problem with periodic boundary conditions. It is shown that the convergence rate increases with an increase in the ordinal number of trial eigenvalue. Based on asymptotic behavior of eigenvalues of the basic problem and the functional-discrete method, qualitative results concerning the arrangement of the eigenvalues of the original eigenvalue transmission problem with periodic boundary conditions are proved. A number of numerical examples are given to support the theory.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Functional-discrete Method for Eigenvalue Transmission Problem with Periodic Boundary Conditions ; volume:5 ; number:2 ; year:2005 ; pages:201-220
Computational methods in applied mathematics ; 5, Heft 2 (2005), 201-220

Creator
Makarov, V. L.
Rossokhata, N. O.
Bandyrsiĭ, B. Ĭ.

DOI
10.2478/cmam-2005-0010
URN
urn:nbn:de:101:1-2410261619287.311685586933
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
05.11.0002, 3:26 PM CET

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Makarov, V. L.
  • Rossokhata, N. O.
  • Bandyrsiĭ, B. Ĭ.

Other Objects (12)