Artikel

The importance of economic variables on London real estate market: A random forest approach

This paper follows the recent literature on real estate price prediction and proposes to take advantage of machine learning techniques to better explain which variables are more important in describing the real estate market evolution. We apply the random forest algorithm on London real estate data and analyze the local variables that influence the interaction between housing demand, supply and price. The variables choice is based on an urban point of view, where the main force driving the market is the interaction between local factors like population growth, net migration, new buildings and net supply.

Language
Englisch

Bibliographic citation
Journal: Risks ; ISSN: 2227-9091 ; Volume: 8 ; Year: 2020 ; Issue: 4 ; Pages: 1-17 ; Basel: MDPI

Classification
Wirtschaft
Housing Supply and Markets
Financial Forecasting and Simulation
Subject
house price prediction
real estate
machine learning
random forest

Event
Geistige Schöpfung
(who)
Levantesi, Susanna
Piscopo, Gabriella
Event
Veröffentlichung
(who)
MDPI
(where)
Basel
(when)
2020

DOI
doi:10.3390/risks8040112
Handle
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Levantesi, Susanna
  • Piscopo, Gabriella
  • MDPI

Time of origin

  • 2020

Other Objects (12)