Artikel

Predicting intensive care unit bed occupancy for integrated operating room scheduling via neural networks

In a master surgery scheduling (MSS) problem, a hospital's operating room (OR) capacity is assigned to different medical specialties. This task is critical since the risk of assigning too much or too little OR time to a specialty is associated with overtime or deficit hours of the staff, deferral or delay of surgeries, and unsatisfied—or even endangered—patients. Most MSS approaches in the literature focus only on the OR while neglecting the impact on downstream units or reflect a simplified version of the real-world situation. We present the first prediction model for the integrated OR scheduling problem based on machine learning. Our three-step approach focuses on the intensive care unit (ICU) and reflects elective and urgent patients, inpatients and outpatients, and all possible paths through the hospital. We provide an empirical evaluation of our method with surgery data for Universitätsklinikum Augsburg, a German tertiary care hospital with 1700 beds. We show that our model outperforms a state-of-the-art model by 43% in number of predicted beds. Our model can be used as supporting tool for hospital managers or incorporated in an optimization model. Eventually, we provide guidance to support hospital managers in scheduling surgeries more efficiently.

Sprache
Englisch

Erschienen in
Journal: Naval Research Logistics (NRL) ; ISSN: 1520-6750 ; Volume: 68 ; Year: 2021 ; Issue: 1 ; Pages: 65-88 ; Hoboken, USA: John Wiley & Sons, Inc.

Klassifikation
Management
Thema
artificial neural network
downstream units
intensive care unit
machine learning
master surgery scheduling
operations research

Ereignis
Geistige Schöpfung
(wer)
Schiele, Julian
Koperna, Thomas
Brunner, Jens O.
Ereignis
Veröffentlichung
(wer)
John Wiley & Sons, Inc.
(wo)
Hoboken, USA
(wann)
2021

DOI
doi:10.1002/nav.21929
Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Schiele, Julian
  • Koperna, Thomas
  • Brunner, Jens O.
  • John Wiley & Sons, Inc.

Entstanden

  • 2021

Ähnliche Objekte (12)