Arbeitspapier

Locally Adaptive Function Estimation for Binary Regression Models

In this paper we present a nonparametric Bayesian approach for fitting unsmooth or highly oscillating functions in regression models with binary responses. The approach extends previous work by Lang et al. (2002) for Gaussian responses. Nonlinear functions are modelled by first or second order random walk priors with locally varying variances or smoothing parameters. Estimation is fully Bayesian and uses latent utility representations of binary regression models for efficient block sampling from the full conditionals of nonlinear functions.

Language
Englisch

Bibliographic citation
Series: Discussion Paper ; No. 310

Subject
adaptive smoothing
forest health data
highly oscillating functions
MCMC
random walk priors
unsmooth functions
variable smoothing parameter

Event
Geistige Schöpfung
(who)
Jerak, Alexander
Lang, Stefan
Event
Veröffentlichung
(who)
Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen
(where)
München
(when)
2003

DOI
doi:10.5282/ubm/epub.1691
Handle
URN
urn:nbn:de:bvb:19-epub-1691-7
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Jerak, Alexander
  • Lang, Stefan
  • Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen

Time of origin

  • 2003

Other Objects (12)