Arbeitspapier

Inference in Regression Discontinuity Designs with a Discrete Running Variable

We consider inference in regression discontinuity designs when the running variable only takes a moderate number of distinct values. In particular, we study the common practice of using confidence intervals (CIs) based on standard errors that are clustered by the running variable. We derive theoretical results and present simulation and empirical evidence showing that these CIs have poor coverage properties and therefore recommend that they not be used in practice. We also suggest alternative CIs with guaranteed coverage properties under easily interpretable restrictions on the conditional expectation function.

Sprache
Englisch

Erschienen in
Series: IZA Discussion Papers ; No. 9990

Klassifikation
Wirtschaft
Estimation: General
Semiparametric and Nonparametric Methods: General
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Single Equation Models; Single Variables: Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
Thema
regression discontinuity design
discrete running variable
clustered standard errors

Ereignis
Geistige Schöpfung
(wer)
Kolesár, Michal
Rothe, Christoph
Ereignis
Veröffentlichung
(wer)
Institute for the Study of Labor (IZA)
(wo)
Bonn
(wann)
2016

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Kolesár, Michal
  • Rothe, Christoph
  • Institute for the Study of Labor (IZA)

Entstanden

  • 2016

Ähnliche Objekte (12)