An optimized solution to the course scheduling problem in universities under an improved genetic algorithm

Abstract: The increase in the size of universities has greatly increased the number of teachers, students, and courses and has also increased the difficulty of scheduling courses. This study used coevolution to improve the genetic algorithm and applied it to solve the course scheduling problem in universities. Finally, simulation experiments were conducted on the traditional and improved genetic algorithms in MATLAB software. The results showed that the improved genetic algorithm converged faster and produced better solutions than the traditional genetic algorithm under the same crossover and mutation probability. As the mutation probability in the algorithm increased, the fitness values of both genetic algorithms gradually decreased, and the computation time increased. With the increase in crossover probability in the algorithm, the fitness value of the two genetic algorithms increased first and then decreased, and the computational time decreased first and then increased.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
An optimized solution to the course scheduling problem in universities under an improved genetic algorithm ; volume:31 ; number:1 ; year:2022 ; pages:1065-1073 ; extent:9
Journal of intelligent systems ; 31, Heft 1 (2022), 1065-1073 (gesamt 9)

Urheber
Zhang, Qiang

DOI
10.1515/jisys-2022-0114
URN
urn:nbn:de:101:1-2022091614153965850834
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:21 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Zhang, Qiang

Ähnliche Objekte (12)