Arbeitspapier

Multivariate tail copula: modeling and estimation

In general, risk of an extreme outcome in financial markets can be expressed as a function of the tail copula of a high-dimensional vector after standardizing marginals. Hence it is of importance to model and estimate tail copulas. Even for moderate dimension, nonparametrically estimating a tail copula is very inefficient and fitting a parametric model to tail copulas is not robust. In this paper we propose a semi-parametric model for tail copulas via an elliptical copula. Based on this model assumption, we propose a novel estimator for the tail copula, which proves favourable compared to the empirical tail copula, both theoretically and empirically

Language
Englisch

Bibliographic citation
Series: Discussion Paper ; No. 468

Subject
Asymptotic normality
Dependence modeling
Elliptical copula
Elliptical distribution
Multivariate modeling
Regular variation
Tail copula

Event
Geistige Schöpfung
(who)
Klüppelberg, Claudia
Kuhn, Gabriel
Peng, Liang
Event
Veröffentlichung
(who)
Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen
(where)
München
(when)
2006

DOI
doi:10.5282/ubm/epub.1836
Handle
URN
urn:nbn:de:bvb:19-epub-1836-8
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Klüppelberg, Claudia
  • Kuhn, Gabriel
  • Peng, Liang
  • Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen

Time of origin

  • 2006

Other Objects (12)